Reset Form

THERAPY ACCELERATOR INITIAL COMMISSIONING SUMMARY

State Form 46886 (R2 / 5-12)
INDIANA STATE DEPARTMENT OF HEALTH
MEDICAL RADIOLOGY SERVICES

Facility registration number		Name of facility		Date of inspection (month, day, year)
Machine number	Machine design (use codes)		Location	Manufacturer (use codes)
Date of manufacture (month, year)	Model number		Serial number	
RADIATION SAFETY SURVEY				
Name of qualified physicist who performed shielding calculations		Physicist number	Shielding document submitted?	
Workload assumptions				
Measurement set-up				
Date of radiation safety instrumentation / calibration (month, day, year)				

RESULTS OF RADIATION SURVEY					
Location (Submit a facility layout indicating where the measurements were taken.)	$\underset{0^{\circ}}{\text { mRem }}$	$\begin{gathered} \text { mRem } \\ 90^{\circ} \end{gathered}$	$\begin{gathered} \text { mRem } \\ 180^{\circ} \end{gathered}$	$\begin{gathered} \text { mRem } \\ 270^{\circ} \end{gathered}$	mRem per week
Console / Control Area					
Primary Barrier (90° Gantry Angle)					
Primary Barrier (270 ${ }^{\circ}$ Gantry Angle)					
Roof					
Door					
Secondary Barrier					
Secondary Barrier					
Secondary Barrier					
Secondary Barrier					
HVAC Ductwork					
Accessible Conduits					

| DOSIMETRY SYSTEM AT FACILITY | | |
| :--- | :--- | :--- | :--- |
| Manufacturer of cylindrical chamber | Model of cylindrical chamber | Date of ADCL calibration (month, day, year) |
| Manufacturer of parallel plate chamber | Model of parallel plate chamber | Date of N gas derivation (month, day, year) |
| Manufacturer of electrometer | Model of electrometer | Date of ADCL calibration (month, day, year) |
| Date of aneroid barometer intercomparison (month, day, year) | | |
| Calibration protocol | | |

QUALITY MANAGEMENT PROGRAM

Submit the following departmental quality assurance documents:

- Treatment planning computer and dose calculated algorithm QA procedures
- Patient chart review policy and procedures
- Weekly output constancy check policy and procedure
- Monthly output spot check procedure
* The qualified radiation oncology physicist shall specify tolerance values based upon accelerator manufacture specifications and the most recent published standards. Corrective action is required for measured data that exceeds the stated tolerance.
** Energy (bending magnet current), flatness, symmetry, temperature and compensation, et cetera
*** Target slide or scattering foil, dose chamber slide, dose rate, et cetera.

FACILITY REQUIREMENTS			
	Satisfactory	Unsatisfactory	Not Applicable
Warning Light at Entrance to Accelerator Room Operational	\square	\square	\square

ACCELERATOR REQUIREMENTS

ACCELERATOR REQUIREMENTS			
	Satisfactory	Unsatisfactory	Not Applicable
Absorbed Dose due to Leakage Radiation in the Patient Plane			
Transmission Through Collimators			
Removable Wedges Clearly Identified			
X-ray Contamination of Electrons Beams			
Absorbed Dose at the Surface			
Dose Monitoring System:			
Incorporated into two independent dose monitoring systems			
Monitor units displayed in the event of a power failure			
A symmetry of beam monitored and interlocked			
Secondary dose monitoring system able to terminate irradiation			
Timer terminates irradiation if dose monitoring systems fail			
Selection of Radiation Mode			
Selection of Energy			
Selection of Fixed or Rotational Mode			

MECHANICAL PARAMETERS				
	Satisfactory	Unsatisfactory		Tolerance *
Gantry Rotation Isocenter				
Collimator Rotation Isocenter				
Table (Couch) Rotation Isocenter				
Field Size Readouts				
Gantry Angle Readouts	-			
Collimator Angle Indicator				
Optical Distance Indicator (ODI) Accuracy and Linearity				
Light / Radiation Field Congruency				
Laser Alignment System Accuracy				
Emergency Off Switches	Operational?		Yes	No
Door Interlock	Operational?		Yes	No
Dosimetry Interlocks **	Operational?		Yes	No
Safety Interlocks ***	Operational?		Yes	No
Audio Communications System	Operational?		Yes	No
Visual Monitor System	Operational?		Yes	No

Page 2 of 3

* The qualified radiation oncology physicist shall specify tolerance values based upon accelerator manufacture specifications and the most recent published standards. Corrective action is required for measured data that exceeds the stated tolerance.

ELECTRON BEAM PARAMETERS

Signature of physicist	Date (month, day, year)
Printed name of physicist	Physicist number

